Comparison of Functional Recovery of Manual Dexterity after Unilateral Spinal Cord Lesion or Motor Cortex Lesion in Adult Macaque Monkeys
نویسندگان
چکیده
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns ("true" recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.
منابع مشابه
Effects of rehabilitative training on recovery of hand motor function: A review of animal studies
Neuromotor systems have the capacity for functional recovery following damage to the central nervous system. This recovery can be enhanced by rehabilitative training. Animal studies in which artificial damage is induced in a specific region of the brain or spinal cord of rodents or monkeys have contributed to our understanding of the effects of rehabilitative training. In this article, I provid...
متن کاملEffects of unilateral motor cortex lesion on ipsilesional hand's reach and grasp performance in monkeys: relationship with recovery in the contralesional hand.
Manual dexterity, a prerogative of primates, is under the control of the corticospinal (CS) tract. Because 90-95% of CS axons decussate, it is assumed that this control is exerted essentially on the contralateral hand. Consistently, unilateral lesion of the hand representation in the motor cortex is followed by a complete loss of dexterity of the contralesional hand. During the months following...
متن کاملBehavioral Assessment of Manual Dexterity in Non-Human Primates
The corticospinal (CS) tract is the anatomical support of the exquisite motor ability to skillfully manipulate small objects, a prerogative mainly of primates(1). In case of lesion affecting the CS projection system at its origin (lesion of motor cortical areas) or along its trajectory (cervical cord lesion), there is a dramatic loss of manual dexterity (hand paralysis), as seen in some tetrapl...
متن کاملProgressive plastic changes in the hand representation of the primary motor cortex parallel incomplete recovery from a unilateral section of the corticospinal tract at cervical level in monkeys.
After a sub-total hemisection of the cervical cord at level C7/C8 in monkeys, a paralysis of the homolateral hand is rapidly followed by an incomplete recovery of manual dexterity, reaching a plateau after about 40-50 days, whose extent appears related to the size of the lesion. During a few days after the lesion, the hand representation in the contralateral motor cortex disappeared, replaced b...
متن کاملAutologous adult cortical cell transplantation enhances functional recovery following unilateral lesion of motor cortex in primates: a pilot study.
BACKGROUND Although cell therapy is a promising approach after cerebral cortex lesion, few studies assess quantitatively its behavioral gain in nonhuman primates. Furthermore, implantations of fetal grafts of exogenous stem cells are limited by safety and ethical issues. OBJECTIVE To test in nonhuman primates the transplantation of autologous adult neural progenitor cortical cells with assess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013